Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 44(2): 506-517, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32965648

RESUMO

Intervertebral disc degeneration (IDD) is a main contributor to low back pain. A close relationship exists between inflammation and pain. Estrogen can affect inflammation and may play a crucial role in IDD and pain. Substance P (SP) can also regulate the expression of pro-inflammatory cytokines in intervertebral disc (IVD). This study aimed to investigate the potential role of SP in estrogen regulation of IDD. Nine-week-old C57BL/6 female mice were divided into four groups as follows: sham surgery (sham), ovariectomy (OVX), ovariectomy plus estrogen replacement therapy (ERT) group (OVX+E2), and ovariectomy, ERT plus neurokinin 1 receptor (NK1R) agonist (OVX+E2+G). Serum E2, body, and uterus weight were recorded. Immunohistochemistry study and quantitative real-time PCR were used for SP, NK1R, IL-1ß, IL-6, and TNF-α examination and comparison in IVD at protein and gene levels. After OVX, the gene and protein expression of TNF-α, IL-1ß, IL-6, SP, and NK1R in NP cells significantly increased compared with the sham group. ERT can reverse these impacts. ERT plays anti-inflammatory and anti-hyperalgesic roles in IDD of OVX mice. The estrogen-induced changes of the pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, are significantly inhibited by NK1R agonists. SP may be a mediator of estrogen regulating pro-inflammatory factors in IDD. Estrogen may affect IVD inflammation through two ways: one is to directly affect the level of pro-inflammatory cytokines and the other is by means of modulation of SP.


Assuntos
Citocinas/imunologia , Estrogênios/imunologia , Inflamação/metabolismo , Degeneração do Disco Intervertebral/imunologia , Núcleo Pulposo/imunologia , Substância P/imunologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Estrogênios/metabolismo , Feminino , Imuno-Histoquímica , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Pulposo/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Substância P/metabolismo
2.
Med Sci Monit ; 24: 614-622, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29382813

RESUMO

BACKGROUND There is no adequate evidence on how the long duration of laparoscopic surgery affects splanchnic perfusion in elderly patients or the efficacy of acute hypervolemic fluid infusion (AHFI) during the induction of anesthesia. Our aim was to observe the effects of AHFI during the induction of general anesthesia on splanchnic perfusion. MATERIAL AND METHODS Seventy elderly patients receiving laparoscopic colorectal surgery were randomly divided into three groups: lactated Ringer's solution group (group R), succinylated gelatin group (group G), and hypertonic sodium chloride hydroxyethyl starch 40 injection group (group H). Thirty minutes after the induction of general anesthesia, patients received an infusion of target dose of these three solutions. Corresponding hemodynamic parameters, arterial blood gas analysis, and gastric mucosal carbon dioxide tension were monitored in sequences. RESULTS In all three groups, gastric-arterial partial CO2 pressure gaps (Pg-aCO2) were decreased at several beginning stages and then gradually increased, Pg-aCO2 also varied between groups due to certain time points. The pH values of gastric mucosa (pHi) decreased gradually after the induction of pneumoperitoneum in the three groups. CONCLUSIONS The AHFI of succinylated gelatin (12 ml/kg) during the induction of anesthesia can improve splanchnic perfusion in elderly patients undergoing laparoscopic surgery for colorectal cancer and maintain good splanchnic perfusion even after a long period of pneumoperitoneum (60 minutes). AHFI can improve splanchnic perfusion in elderly patients undergoing laparoscopic colorectal surgery.


Assuntos
Cirurgia Colorretal , Laparoscopia , Perfusão , Circulação Esplâncnica , Idoso , Anestesia , Gasometria , Perda Sanguínea Cirúrgica , Feminino , Hemodiluição , Hemodinâmica , Humanos , Masculino , Fatores de Tempo
3.
Brain Res ; 1678: 174-179, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074343

RESUMO

BACKGROUND: Sevoflurane has been shown to stimulate or depress memory in adult rats; however, the cellular mechanism of this bidirectional effect has not been fully investigated. METHODS: We used an intra-hippocampal microinfusion of U0126 to suppress ERK activation. Male SD rats were randomly assigned to four groups: Sham, 0.11%SEV, 0.3%SEV and 0.3%+U0126. They received bilateral injections of U0126 or saline. Rats were anesthetized, and Inhibitory Avoidance (IA) training was performed immediately after anesthesia. The memory retention latency was observed 24 h later. In another experiment, the hippocampus was removed 45 min after IA training to assess ARC expression, the synapsin 1 protein levels and the phosphorylation level of ERK. RESULTS: Treatment with 0.11%SEV led to rapid phosphorylation of ERK, while 0.3%SEV inhibited phosphorylation; the latter change was reversed by the microinfusion of U0126 in the hippocampus. The memory latency result had similar tendencies. The local infusion of U0126 abolished the 0.3%SEV-induced memory impairment and ERK inhibition. Selective upregulations of ARC and synapsin 1 proteins were observed in the 0.3%SEV group compared with the 0.11%SEV group. CONCLUSIONS: The results indicate that different doses of sevoflurane trigger synaptic plasticity-related cytoskeleton proteins through the ERK signaling pathway. This novel modulation by inhalational agents may help to reduce their side-effects on memory function.


Assuntos
Complexo Relacionado com a AIDS/metabolismo , Anestésicos Inalatórios/toxicidade , Hipocampo/metabolismo , Deficiências da Aprendizagem/induzido quimicamente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Éteres Metílicos/toxicidade , Animais , Butadienos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/uso terapêutico , Reação de Fuga/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/patologia , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Nitrilas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sevoflurano , Sinapsinas/metabolismo
4.
World Neurosurg ; 110: e321-e329, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29133001

RESUMO

BACKGROUND: Low bone mass in patients with adolescent idiopathic scoliosis has been well reported. Poor bone quality was regarded as a new and unique prognostic factor in aggravating curve progression. However, the potential biomechanical correlation between them remains unclear. METHODS: Three-dimensional finite element models of idiopathic scoliotic spine with different bone mineral status were created for axial loading simulation. An axial load of 3 different body weights was applied on different bone mineral mass models. The mechanical responses of the vertebral cortical and cancellous bone, facet joints, end plate, and intervertebral disc were analyzed. RESULTS: Accompanied with the low bone mineral status, thoracic scoliosis produced asymmetric and higher stress in the cortical bone, lumbar facet joints, and end plate at the concave side of the thoracic structure curve. Stress increased in the disc at the apex of the scoliosis, whereas it mildly decreased in the L4-5 and L5-S1 disc. Body weight gain increased the stress in scoliotic spine structures in all bone mineral statues. CONCLUSIONS: Biomechanical simulations indicated that low bone mineral mass might aggravate curve progression and induce more serious lumbar compensatory scoliosis in patients with adolescent idiopathic scoliosis. Weight gain was also a risk factor for curve progression.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/fisiopatologia , Escoliose/fisiopatologia , Adolescente , Fenômenos Biomecânicos , Peso Corporal , Doenças Ósseas Metabólicas/complicações , Simulação por Computador , Análise de Elementos Finitos , Humanos , Disco Intervertebral/fisiopatologia , Vértebras Lombares/fisiopatologia , Masculino , Modelos Biológicos , Escoliose/complicações , Estresse Fisiológico , Vértebras Torácicas/fisiopatologia
5.
Oncotarget ; 8(24): 38136-38144, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28430617

RESUMO

Estrogenic modulation of pain is an exceedingly complex phenomenon. However, whether estrogen is involved in discogenic low back pain still remains unclear. Here, immunoreactivity staining technique was used to examine the expression level of the estrogen receptors (ERα and ERß) and a pain related neuropeptide, Substance P in the lumbar intervertebral discs to analyze the relationship between the ERs and Substance P. Nucleus pulposus tissues of 23 elderly female patients were harvested during spinal surgeries and made to detect the immunoreactivity staining of ERα, ERß and Substance P. The colocalization and intensities of ERs and Substance P were explored and evaluated respectively. The correlations between changes of ERα, ERß and Substance P were also assessed.Our results revealed that Substance P colocalized with ERα and ERß both in cytoplasm and nucleus of the nucleus pulposus cells. HSCORE analysis indicated that Substance P negatively correlated with both ERα and ERß expression. Collectively, the crosstalk between ERs and Substance P might exist in the disc tissue. Estrogen-dependent pain mechanism might partly be mediated through ERs and Substance P in the nucleus pulposus of the elderly females. Estrogen and its receptors might be drug targets in discogenic low back pain diseases.


Assuntos
Dor Lombar/metabolismo , Núcleo Pulposo/metabolismo , Receptores de Estrogênio/metabolismo , Substância P/metabolismo , Idoso , Feminino , Humanos , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/metabolismo , Dor Lombar/etiologia
7.
Mol Neurobiol ; 53(1): 216-230, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25421211

RESUMO

It is well established that developmental exposure of sevoflurane (an inhalational anesthetic) is capable of inducing neuronal apoptosis and subsequent learning and memory disorders. Synaptic NMDA receptors activity plays an essential role in cell survival, while the extra-synaptic NMDA receptors activation is usually associated with cell death. However, whether synaptic or extra-synaptic NMDA receptors mediate developmental sevoflurane neurotoxicity is largely unknown. Here, we show that developmental sevoflurane treatment decreased NR2A, but increased NR2B subunit expression both in vitro and in vivo. Sevoflurane-induced neuronal apoptosis was attenuated by synaptic NMDA receptors activation or low dose of exogenous NMDA in vitro. Interestingly, these effects could be abolished by NR2A inhibitor PEAQX, but not NR2B inhibitor Ifenprodil in vitro. In contrast, activation of extra-synaptic NMDA receptors alone had no effects on sevoflurane neurotoxicity. In the scenario of extra-synaptic NMDA receptors stimulation, however, sevoflurane-induced neuronal apoptosis could be prevented by addition of Ifenprodil, but not by PEAQX in vitro. In addition, sevoflurane neurotoxicity could also be rescued by memantine, an uncompetitive antagonist for preferential blockade of extra-synaptic NMDA receptors both in vitro and in vivo. Furthermore, we found that developmental sevoflurane-induced phospho-ERK1/2 inhibition was restored by synaptic NMDA receptor activation (in vitro), low dose of NMDA (in vitro) or memantine (in vivo). And the neuroprotective role of synaptic NMDA activity was able to be reversed by MEK1/2 inhibitor U0126 in vitro. Finally, administration of memantine or NMDA significantly improved spatial learning and memory dysfunctions induced by developmental sevoflurane exposure without influence on locomotor activity. These results indicated that activation of synaptic NR2A-containing NMDA receptors, or inhibition of extra-synaptic NR2B-containing NMDA receptors contributed to the relief of sevoflurane neurotoxicity, and the ERK1/2 MAPK signaling may be involved in this process.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Éteres Metílicos/farmacologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Sevoflurano , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
Neurol Sci ; 36(12): 2177-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26306695

RESUMO

The mechanisms underlying the unconsciousness of general anesthesia are not completely understood. Accumulating evidence indicates the ventrolateral preoptic nucleus (VLPO) in the endogenous sleep circuits may contribute to loss of consciousness (LOC) induced by GABA-enhancing anesthetics. However, there are few studies that look into distinct sleep pathway in the sleep-wake system. In the neural pathway from VLPO to the locus coeruleus (LC), we compared the inhibition effect of propofol on the LC activity before and after VLPO lesion in vivo rats. Systemic administration of propofol (20 mg/kg, i.p.) in normal rats caused a fast and obvious inhibition of LC neurons spontaneous firing (from 0.24 ± 0.06 to 0.12 ± 0.03 Hz). The LC neuronal firing rate of VLPO lesion rats only decreased to 0.18 ± 0.05 Hz (P = 0.021 vs. non-VLPO rats) after the propofol injection, and the time to reach the maximal inhibition level was also prolonged in VLPO lesion rats (2.3 ± 0.7 vs. 5.8 ± 1.2 min, P = 0.037). Microinjections of a selective GABAA receptor antagonist (SR95531) into the LC fully reversed the inhibitory effect of propofol on the LC neuronal activity, but did not significantly affect the latency to loss of righting reflex of rats after propofol administration (3.4 ± 0.9 vs. 3.7 ± 1.2 min, P = 0.639). Our results indicated that VLPO is necessary for the propofol-induced inhibition of LC activity, but the LC may not play an important role in the propofol-induced LOC.


Assuntos
Locus Cerúleo/efeitos dos fármacos , Entorpecentes/farmacologia , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Propofol/farmacologia , Animais , Eletroencefalografia/métodos , Locus Cerúleo/metabolismo , Masculino , Vias Neurais/fisiologia , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono/fisiologia
9.
J Anesth ; 29(2): 279-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25056258

RESUMO

Functional imaging methods, including positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), have become important tools for studying how anesthetic drugs act in the human brain to induce the state of general anesthesia. Recent imaging studies using fMRI and PET techniques have demonstrated the regional effects of propofol on the brain. However, the pharmacological mechanism of the action of propofol in the intact human central nervous system is unclear. To explore the possible action targets of propofol in the human brain, a systematic review of the literature was performed. The literature search was performed with limiting factors of "propofol," "functional imaging," "positron emission tomography", and "functional magnetic resonance imaging" from 1966 to July 2013 (using Medline, EMBASE, CINAHL and hand searches of references). Studies meeting the inclusion criteria were reviewed and critiqued for the purpose of this literature research. Eighteen researches meeting the inclusion criteria were reviewed in terms of the appropriateness of valuation technique. In the unconscious state, propofol sharply reduces the regional glucose metabolism rate (rGMR) and regional cerebral blood flow (rCBF) in all brain regions, particularly in the thalamus. However, GMR, such as in the occipital, temporal, and frontal lobes, was obviously decreased at a sedative dosage of propofol, whereas, changes in the thalamus were not obvious. Using fMRI, several studies observed a decrease of connectivity of the thalamus versus an increase of connectivity within the pons of the brainstem during propofol-induced mild sedation. During deep sedation, propofol preserves cortical sensory reactivity, the specific thalamocortical network is moderately affected, whereas the nonspecific thalamocortical network is severely suppressed. In contrast, several recent fMRI studies are consistent on the systemic decreased effects of propofol in the frontoparietal network. Accumulating evidence suggest that propofol-induced unconsciousness is associated with a global metabolic and vascular depression in the human brain and especially with a significant reduction in the thalamocortical network and the frontoparietal network.


Assuntos
Anestésicos Intravenosos/farmacologia , Encéfalo/efeitos dos fármacos , Propofol/farmacologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Adulto Jovem
10.
J Mol Neurosci ; 55(4): 830-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25294312

RESUMO

GABAergic neurons within the ventrolateral preoptic area (VLPO) play an important role in sleep-wakefulness regulation. Propofol, a widely used systemic anesthetic, has lately been reported to excite noradrenaline (NA)-inhibited type of VLPO neurons. Present study tested if acetylcholine system takes part in the propofol modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in mechanically dissociated rat VLPO neurons using a conventional whole-cell patch clamp technique. Propofol reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that propofol acts presynaptically to decrease the probability of spontaneous GABA release. The propofol action on GABAergic mIPSC frequency was completely blocked by atropine, a nonselective muscarinic acetylcholine (mACh) receptor antagonist, and pirenzepine, a selective M1 receptor antagonist. These results suggest that propofol acts on M1 receptors on GABAergic nerve terminals projecting to VLPO neurons to inhibit spontaneous GABA release. The M1 receptor-mediated modulation of GABAergic transmission onto VLPO neurons may contribute to the regulation of loss of consciousness induced by propofol.


Assuntos
Anestésicos Intravenosos/farmacologia , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores , Potenciais Pós-Sinápticos em Miniatura , Área Pré-Óptica/metabolismo , Propofol/farmacologia , Receptor Muscarínico M1/metabolismo , Animais , Atropina/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Antagonistas Muscarínicos/farmacologia , Pirenzepina/farmacologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
11.
Cell Cycle ; 13(24): 3892-902, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483061

RESUMO

Activity-dependent stimuli induced a calcineurin-mediated dephosphorylation of the transcriptional factor MEF2A at serine408 and promoted a switch from SUMOylation to acetylation at lysine403 which led to MEF2A transcriptional activation. We previously identified SENP2 is the de-SUMOylation enzyme for MEF2A and promotes MEF2A-dependent transcription. We report here a requirement for APC(Cdh1)-SENP2-MEF2A axis in the regulation of MEF2A transcriptional activation. APC(Cdh1) interacts with and targets SENP2 for ubiquitination and destruction in the cytoplasm by recognizing a conserved canonical D-box motif in SENP2. Moreover, Cdh1 regulates the transcriptional activity of MEF2A in a SENP2 dependent manner. Activity-dependent stimuli prevented APC(Cdh1)-induced SENP2 ubiquitination, promoted SENP2 nuclear accumulations, and caused MEF2A de-SUMOylation and MEF2A acetylation, leading to MEF2A transcriptional activation. Thus, our findings defined a post-transcriptional mechanism underlying activity-dependent stimuli-induced MEF2A transcriptional activation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Caderinas/metabolismo , Cisteína Endopeptidases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Motivos de Aminoácidos , Antígenos CD , Caderinas/antagonistas & inibidores , Caderinas/genética , Linhagem Celular Tumoral , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Humanos , Cloreto de Potássio/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sumoilação , Ativação Transcricional/efeitos dos fármacos , Ubiquitinação
12.
Joint Bone Spine ; 81(3): 250-3, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24838202

RESUMO

OBJECTIVES: Sexual dimorphism does occur in intervertebral disc (IVD) degeneration. The involvement of estrogen on IVD health has been well reported in recent years. The estrogen receptors (ER) are the main mediators of estrogen action. ER might play specific roles in the sexual variations of the IVD degeneration. METHODS: Thirty-six elderly patients with lumbar disc degeneration were selected and graded using Pfirrmann's system based on MRI images. Differences of ERα and ERß immunoreactivity staining in nucleus pulposus of each sex and degeneration degree were recorded and compared. RESULTS: Both cytoplasmic and nuclear staining of ERα and ERß immunoreactivity were observed in the nucleus pulposus cells. ERα and ERß expression significantly decreased along with the aggravation of IVD degeneration both in males and females. Expression of ERα and ERß protein in nucleus pulposus of males was significantly higher than that of females. CONCLUSIONS: Gender-specific expression of ER might play a part in sexual dimorphism of IVD degeneration. Gender and degeneration condition differences should be taken into account when the effects of estrogen on IVD metabolism are studied further.


Assuntos
Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Idoso , Feminino , Humanos , Imuno-Histoquímica , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/cirurgia , Vértebras Lombares , Imageamento por Ressonância Magnética , Masculino , Fatores Sexuais
13.
PLoS One ; 9(1): e85536, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465591

RESUMO

BACKGROUND: Cyclin-dependent kinase 5 (Cdk5) has been shown to play an important role in mediating inflammation-induced heat hyperalgesia. However, the underlying mechanism remains unclear. The aim of this study was to determine whether roscovitine, an inhibitor of Cdk5, could reverse the heat hyperalgesia induced by peripheral injection of complete Freund's adjuvant (CFA) via the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway in the dorsal horn of the spinal cord in rats. RESULTS: Heat hyperalgesia induced by peripheral injection of CFA was significantly reversed by roscovitine, TrkB-IgG, and the TrkB inhibitor K252a, respectively. Furthermore, BDNF was significantly increased from 0.5 h to 24 h after CFA injection in the spinal cord dorsal horn. Intrathecal adminstration of the Cdk5 inhibitor roscovitine had no obvious effects on BDNF levels. Increased TrkB protein level was significantly reversed by roscovitine between 0.5 h and 6 h after CFA injection. Cdk5 and TrkB co-immunoprecipitation results suggested Cdk5 mediates the heat hyperalgesia induced by CFA injection by binding with TrkB, and the binding between Cdk5 and TrkB was markedly blocked by intrathecal adminstration of roscovitine. CONCLUSION: Our data suggested that the BDNF-TrkB signaling pathway was involved in CFA-induced heat hyperalgesia mediated by Cdk5. Roscovitine reversed the heat hyperalgesia induced by peripheral injection of CFA by blocking BDNF/TrkB signaling pathway, suggesting that severing the close crosstalk between Cdk5 and the BDNF/TrkB signaling cascade may present a potential target for anti-inflammatory pain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Hiperalgesia/prevenção & controle , Dor/prevenção & controle , Receptor trkB/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Carbazóis/farmacologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Adjuvante de Freund/administração & dosagem , Regulação da Expressão Gênica , Temperatura Alta , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Alcaloides Indólicos/farmacologia , Masculino , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores , Receptor trkB/genética , Roscovitina , Transdução de Sinais , Medula Espinal
14.
Neuropharmacology ; 77: 90-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24055498

RESUMO

Aberrant CDK5 activity is implicated in a number of neurodegenerative disorders. Isoflurane exposure leads to neuronal apoptosis, and subsequent learning and memory defects in the developing brain. The present study was designed to examine whether and how CDK5 activity plays a role in developmental isoflurane neurotoxicity. Rat pups and hippocampal neuronal cultures were exposed to 1.5% isoflurane for 4 h. The protein and mRNA levels of CDK5, p35 and p25 were detected by western blot and QReal-Time PCR. CDK5 activity was evaluated in vitro using Histone H1 as a substrate. Roscovitine (an inhibitor of CDK5) was applied before isoflurane treatment, cleaved Caspase-3, Bcl-2, Bax, MEF2 and phospho-MEF2A-Ser-408 expressions were determined. Dominant-Negative CDK5 was transfected before isoflurane treatment. Neuronal apoptosis was evaluated by Flow cytometry (FCM) and TUNEL-staining. Cognitive functions were assessed by Morris water maze. We found that isoflurane treatment led to an aberrant CDK5 activation due to its activator p25 that was cleaved from p35 by calpain. Inhibition of CDK5 activity with Roscovitine enhanced Bcl-2, and decreased cleaved Caspase-3 and Bax expressions. In addition, isoflurane exposure resulted in a decrease of MEF2 and increase of phospho-MEF2A-Ser-408, which were rescued by Roscovitine or Dominant-Negative CDK5 transfection. Dominant-Negative CDK5 transfection also decreased the percentage of TUNEL-positive cells in isoflurane neurotoxicity. Moreover, Roscovitine remarkably alleviated the learning and memory deficits induced by postnatal isoflurane exposure. These results indicated that aberrant CDK5 activity-dependent MEF2 phosphorylation mediates developmental isoflurane neurotoxicity. Inhibition of CDK5 overactivation contributes to the relief of isoflurane neurotoxicity in the developing brain.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Isoflurano/toxicidade , Neurônios/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Roscovitina
15.
PLoS One ; 7(10): e46666, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056393

RESUMO

Mechanisms associated with cyclin-dependent kinase 5 (Cdk5)-mediated heat hyperalgesia induced by inflammation remain undefined. This study was designed to examine whether Cdk5 mediates heat hyperalgesia resulting from peripheral injection of complete Freund's adjuvant (CFA) in the spinal dorsal horns of rats by interacting with synaptophysin, a well known membrane protein mediating the endocytosis-exocytosis cycle of synaptic vesicles as a molecular marker associated with presynaptic vesicle membranes. The role of Cdk5 in mediating synaptophysin was examined through the combined use of behavioral approaches, imaging studies, and immunoprecipitation following CFA-induced inflammatory pain. Results showed that Cdk5 colocalized with both synaptophysin and soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs) consisting of VAMP-2, SNAP-25, and syntaxin 1A in spinal dorsal horn of rats. Increased synaptophysin expression of spinal cord horn neurons post intraplantar injection of CFA coincided with increased duration of heat hyperalgesia lasting from 6 h to 3 d. Intrathecal administration of roscovitine, a Cdk5 specific inhibitor, significantly depressed synaptophysin expression during peak heat hyperalgesia and heat hyperalgesia induced by peripheral injection of CFA. Data presented in this report indicated that calpain activity was transiently upregulated 6 h post CFA-treatment despite previous reports suggesting that calpain was capable of cleaving p35 into p25. Results from previous studies obtained by other laboratories demonstrated that significant changes in p35 expression levels within spinal cord horn neurons were not observed in the CFA-treated inflammatory pain model although significant upregulation of Cdk5 kinase was observed between 2 h to 7 d. Therefore, generation of p25 occurred in a calpain-independent fashion in a CFA-treated inflammatory pain model. Our results demonstrated that increased synaptophysin levels were involved in heat hyperalgesia mediated by Cdk5 in spinal cord dorsal horns of CFA-treated rats, suggesting that inhibiting abnormal activation of Cdk5-synaptophysin may present a novel target for diminishing inflammatory pain.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Sinaptofisina/metabolismo , Animais , Western Blotting , Imunofluorescência , Adjuvante de Freund/uso terapêutico , Imunoprecipitação , Inflamação/tratamento farmacológico , Masculino , Dor/tratamento farmacológico , Dor/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Proteína 2 Associada à Membrana da Vesícula/metabolismo
16.
Neurobiol Learn Mem ; 96(3): 492-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21872671

RESUMO

Considerable evidence indicates that the noradrenergic system of the basolateral amygdala (BLA) participates in the consolidation of various types of emotionally arousing memories. We previously reported that administration of an anesthetic-dose of sevoflurane immediately after continuous multiple-trail inhibition avoidance (CMIA) training impaired memory consolidation. This experiment investigated whether posttraining noradrenergic activation of the BLA is sufficient to reverse the memory impairing effect of sevoflurane. Adult male Sprague-Dawley rats received bilateral injections of norepinephrine (NE 0.3, 1.0, or 3.0 µg/0.5 µl) or normal saline (NS 0.5 µl) immediately after training in a CMIA paradigm. Subsequently, the rats were exposed to sevoflurane (2% inspired) or air for 2h. Norepinephrine produced a dose-dependent enhancement of memory consolidation on a 24-h retention test. The highest dose of NE tested (3.0 µg/0.5 µl) blocked sevoflurane-induced impairment of memory consolidation and reversed the inhibitory effect of sevoflurane on activity-regulated cytoskeletal protein (Arc) expression in the hippocampus 2h after training. These findings provide evidence that the mechanism mediating the memory-impairing effect of sevoflurane involves a network interaction between the BLA noradrenergic system and modulation of Arc protein expression in the hippocampus.


Assuntos
Tonsila do Cerebelo/metabolismo , Anestésicos Inalatórios , Proteínas do Citoesqueleto/metabolismo , Transtornos da Memória/prevenção & controle , Éteres Metílicos , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Proteínas do Citoesqueleto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inibição Psicológica , Masculino , Transtornos da Memória/induzido quimicamente , Proteínas do Tecido Nervoso/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Norepinefrina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Retenção Psicológica/efeitos dos fármacos , Retenção Psicológica/fisiologia , Sevoflurano
17.
Neurobiol Learn Mem ; 94(4): 461-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807582

RESUMO

Sevoflurane administration impairs memory processes in both humans and animals. Increasing evidence suggests that enhancement of the phosphorylation state of glycogen synthase kinase-3ß (GSK-3ß), as a result of acute administration of lithium chloride (LiCl), may enhance memory consolidation. The current experiments examined whether GSK-3ß phosphorylation was involved in mediating the memory impairing effects of posttraining sevoflurane on inhibitory avoidance (IA) retention. In experiment 1, adult male Sprague-Dawley rats were exposed to sevoflurane (0.5%, 1%, or 2%) for 2h immediately after training in a continuous multiple-trail IA paradigm. Sevoflurane (2% inspired) induced significant impairment of retention performance on a 24-h test and inhibited phosphorylation of GSK-3ß in the hippocampus 2h after training. In experiment 2, administration of LiCl (100mg/kg, intraperitoneally) 30 min before IA training not only blocked the sevoflurane-induced impairment of consolidation, but also reversed the inhibitory effect of sevoflurane on GSK-3ß phosphorylation in the hippocampus. Collectively, these findings support the hypothesis that sevoflurane exposure can impair consolidation of IA memory in rats. Sevoflurane-induced amnesia may be due, at least in part, to suppression of GSK-3ß phosphorylation in the hippocampus.


Assuntos
Anestésicos Inalatórios/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Éteres Metílicos/farmacologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Hipocampo/enzimologia , Cloreto de Lítio/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Sevoflurano , Estatísticas não Paramétricas
19.
Clin Appl Thromb Hemost ; 16(1): 91-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19825916

RESUMO

OBJECTIVE: The purpose of this study was to investigate the effects of acute hypervolemic fluid infusion (AHFI) of 6% hydroxyethyl starch (HES) 130/0.4 or 4% succinylated gelatin (GEL) on hemostasis and the possible mechanisms. METHODS: Thirty-six gastric cancer patients were randomized to receive AHFI of either HES, GEL or lactated Ringer's (RL) solution at the rate of 30 mL x kg(-1) x h( -1) from 20 minutes before to 40 minutes after induction of general anesthesia. RESULTS: Group HES and GEL had significantly prolonged PT and aPTT, decreased VIII:C and vWF immediately after AHFI. Statistically prolonged reaction time and coagulation time, and decreased growth angle were seen immediately after HES infusion. Maximum amplitude decreased significantly in group HES and GEL immediately after and 4 hours after AHFI. CONCLUSION: Gelatin reduced clot quality associated with derangements of fibrin polymerization and HES 130/0.4 delayed initiation of sufficient thrombin generation to convert fibrinogen to fibrin and impaired platelet function.


Assuntos
Gelatina/administração & dosagem , Hemostasia/efeitos dos fármacos , Derivados de Hidroxietil Amido/administração & dosagem , Substitutos do Plasma/administração & dosagem , Neoplasias Gástricas/sangue , Neoplasias Gástricas/cirurgia , Succinatos/administração & dosagem , Adulto , Anestesia Geral , Testes de Coagulação Sanguínea , Perda Sanguínea Cirúrgica/prevenção & controle , Plaquetas/fisiologia , Volume Sanguíneo/efeitos dos fármacos , Feminino , Fibrina/metabolismo , Hidratação , Gastrectomia , Humanos , Soluções Isotônicas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Lactato de Ringer , Tromboelastografia/efeitos dos fármacos , Trombina/metabolismo
20.
Br J Hosp Med (Lond) ; 70(2): 101-3, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19229151

RESUMO

Artificial colloids are used in situations with a high risk of bleeding such as trauma or during surgery. Although more efficacious than crystalloids, colloids can be associated with derangements of the haemostatic system and may also interfere with normal haemostasis via a number of different mechanisms.


Assuntos
Gelatina/farmacologia , Hemostasia/efeitos dos fármacos , Derivados de Hidroxietil Amido/farmacologia , Substitutos do Plasma/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Gelatina/uso terapêutico , Hemodinâmica/efeitos dos fármacos , Humanos , Derivados de Hidroxietil Amido/uso terapêutico , Substitutos do Plasma/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...